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Abstract

Policy enabling tropical forests to approach their potential contribution to global-climate-change mitigation requires forecasts of land use

and carbon storage on a large scale over long periods. In this paper, we present an integrated modeling methodology that addresses these

needs. We model the dynamics of the human land-use system and of C pools contained in each ecosystem, as well as their interactions. The

model is national scale, and is currently applied in a preliminary way to Costa Rica using data spanning a period of over 50 years. It combines

an ecological process model, parameterized using field and other data, with an economic model, estimated using historical data to ensure a

close link to actual behavior. These two models are linked so that ecological conditions affect land-use choices and vice versa. The integrated

model predicts land use and its consequences for C storage for policy scenarios. These predictions can be used to create baselines, reward

sequestration, and estimate the value in both environmental and economic terms of including C sequestration in tropical forests as part of the

efforts to mitigate global climate change. The model can also be used to assess the benefits from costly activities to increase accuracy and thus

reduce errors and their societal costs.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The clean development mechanism (CDM) under the

Framework Convention on Climate Change is the insti-

tutional structure for the sale to developed countries of

credits from net C emissions reductions in developing

countries. Afforestation and reforestation activities carried

out since 2000 are eligible for such credits. Avoiding

deforestation has been ruled ineligible, however, despite its

potentially large contribution to short-run climate-change

mitigation and the suite of possible ancillary benefits. The

developed countries that demand C credits to satisfy their

obligations under the Kyoto Protocol are also constrained.

These countries are limited to purchasing CDM credits from

C sequestration up to only 1% of their ‘assigned amount’ or

total allowable net emissions. These constraints limit the

global societal gains from C sequestration in the tropics.

One key reason for these limitations is the uncertainty

inherent in predictions of land use and C storage and

dynamics. Prediction and measurement difficulties raise

environmental integrity, efficiency and equity concerns. The

difference between accurately measured actual C pools and

the ‘baseline’ level of C storage expected to occur without a

CDM is the ideal measure of ‘certified emission reductions’.

If C is measured poorly and baselines are inaccurate, trading

could lead to increased global net emissions and efforts to

sequester C will be misdirected and inefficient. Further,

stakeholders must feel that rewards are fair. Over-rewarding

additional sequestration would anger environmentalists and

the supplier’s competitors, while underpaying for honest

effort may discourage suppliers. Thus, accurate baseline

predictions and C measurements are valuable. For practical

reasons, however, the effort put into them should be limited.

If we spend excessive time and money on measurement and
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prediction, we are wasting resources that could be used

directly for mitigation.

These concerns highlight the need for high-quality

integrated models. This paper describes and illustrates

how an integrated model can be built on strong empirical

foundations. Our model can be used to generate land-use

baseline and C estimates; to simulate policy scenarios; and

to assess the benefits of predicting land use and measuring C

accurately. We model an international climate policy that

rewards all forms of sequestration and avoided deforestation

and allows national level ‘projects’ in developing countries.

This is not in line with Kyoto but rather aims to illustrate the

potential benefits and the risks from a more comprehensive

policy. Our model could be restricted to the Kyoto case as

one scenario. We hope models such as ours can be used to

inform future policy makers.

This paper is drawn from work by an interdisciplinary

team of ecologists, economists and geographers who are

creating such a model for the whole of Costa Rica over a

period of over 50 years. For more details see Pfaff et al.

(2000).1 This approach could be replicated in other

developing countries, at either a regional or national level.

2. Conceptual design of ICEE (integrated C ecology

and economics) model

2.1. Concepts

Our ICEE model integrates, both spatially and tem-

porally, ecological modeling of C dynamics with economic

modeling of land use. To our knowledge, interactions in

which land use affects forest ecosystems on this scale have

been considered only implicitly through the use of historical

land-use and land-cover databases in ecological simulations

(Reiners et al., 2002; VEMAP, 1995; Foley et al., 1996;

Houghton et al., 1999). Antle et al. (2001) have created a

similar coupled model that focuses on C-sequestration in

agricultural soil. Linkages from ecology to land use are

often incorporated, in the sense that ecological conditions

are understood to constrain economic outcomes. But many

analyses have ignored all linkages, and even when linkages

have been modeled, the dynamic interactions and feedback

mechanisms between ecosystems and land-use changes

have largely been ignored.

Our modeling of C pools begins with a dynamic process

model of below- and above-ground C. This is calibrated

along a range of land-cover types, both natural and

intervened, using field data including C and N pools in

both vegetation and soils, some collected as part of our

project. Then the model is deployed at the local to national

level using GIS data on soil types, climatic conditions and

land-use/cover types to simulate C dynamics in space and

time.

Our economic modeling combines a dynamic model of

individual landowner choices with an underlying model of

spatial economic development. Individual land-use

decisions change over time with economic and physical

conditions. Decisions by landowners in turn change local

conditions, which affect their own and others’ future

individual land-use decisions. We estimate the effects of

driving factors on forest clearing outcomes, using remotely

sensed observations of actual land cover at several points in

time as well as socio-economic, biophysical and ecological

data. The results, i.e. predicted clearing probabilities for all

plots in the country, are applied to GIS data on distributions

of the independent variables.

Cross-disciplinary integration of these modeling efforts

takes three forms. First, we allow soil fertility, which both

influences and is influenced by C stocks, to affect human

land-use choices. Second, land-use choices affect C

dynamics. Third, any rewards offered for C sequestration

that are based on current and potential C storage, will affect

land-use choices. These interactions occur in real time and,

combined with the non-linear dynamics of each of the

individual systems, create a complex set of possible paths of

C storage and land use.

Our land-use and C predictions, at local or national

scales, are evaluated in terms of both in-sample fit and

prediction of out-of-sample data. We also consider econ-

omic and environmental costs of inaccuracies in land-use

and C predictions. Because baseline and C measures have

direct real-world applications, the inaccuracies can be

viewed in light of the costs of real-world errors.

2.2. Design

Our Integrated Carbon Ecology and Economics model,

ICEE, explicitly models the interactions and feedbacks

between ecosystems and human land-use activities using a

3-component integrated model shown in Fig. 1.

The left hand side of the figure (the first component)

represents the ecological model that uses climate, soil, and

land-use and land-cover information to predict C stocks and

soil quality for a range of physical conditions and land uses

at time t0; as well as their evolution over time. The right

hand side (the third component) represents the equivalent

economic modeling. Exogenous (i.e. determined outside the

model) economic factors such as international prices,

agricultural technology and C sequestration policy, and

endogenous (altered within the system) economic factors,

such as the history of land use and the road network in an

area, determine the economic conditions for each plot.

1 As well as the authors, the project involves Arturo Sanchez who

provides GIS expertise, Boone Kauffman who provides ecological

fieldwork expertise, Vicente Watson and Joseph Tosi who provide local

ecological and geographic knowledge and experience with the Life Zone

system of ecosystem classification, and David Schimel. We are grateful to

the Tinker Foundation, the National Center for Ecological Analysis and

Synthesis, the National Science Foundation and the United Nations Food

and Agriculture Organisation for funding large parts of this project.
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The endogenous factors evolve over time in response to

individual land use choices.

The middle section (the second component) couples the

ecological and economic models through the land man-

ager’s choice of land use at each point in time. This choice

depends on expected economic returns from a range of land

uses. The expected economic returns depend on both current

and expected future ecological and economic conditions.

For example, if landowners expect land to degrade (i.e. lose

site crop production potential) under a given use, this will

affect their assessment of optimal land use. At the same

time, land-use choices alter endogenous ecological and

economic conditions in the next period. Land-use choices

also affect nearby plots by changing access, market

conditions, and ecosystem parameters (for instance, they

have effects on seed dispersal dynamics and fire regimes).

The exogenous variables are predicted outside the model

as scenario assumptions. Endogenous conditions at the

beginning of the prediction period are used as initial

conditions from which the model is run forward to predict

the endogenous variables and the economic and ecological

outputs. These predictions will depend not only on the

conditions at each plot but also on the location of the plot

and conditions on other plots located nearby. The output of

the model includes C stocks and land use for every point in

space in every time period. Kerr et al. (2002) use a

simplified version of this approach to predict the evolution

of C stocks in Costa Rica.

3. Disciplinary modeling

3.1. Ecological modeling

The ecological component models the dynamics of

endogenous ecological and physical conditions, such as C

and N stocks and fluxes, in response to changes in

exogenous conditions such as climate and to endogenous

land use choices. The model can assimilate land-cover/use

information from remote sensing, agricultural census

statistics, and projected land-cover/use from the economic

model. The ecological model provides input to the land-use-

choice model through estimates of biomass productivity. It

also provides estimates of C stocks at each point in time,

which depend on ecosystem conditions and interventions.

About a dozen models can be used to predict the

dynamics of soil C in ecosystems (Smith et al., 1997). We

have elected to use the well-established ecosystem model

CENTURY. This model, developed at Colorado State

University (Parton et al., 1987), simulates C, N, P, and S

cycles in various ecosystems, including pastures, forests,

crops, and savannas, and can model the impacts of

management practices such as fertilization, and cultivation,

as well as natural disturbances such as fire and hurricane

(Parton et al., 1987, 1993). This model has also been tested

extensively against field measurements from various

ecosystems around the world (Parton et al., 1993; Schimel

et al., 1994; Smith et al., 1997) and used for biogeochemical

Fig. 1. Diagram showing the interactions among various components of the Integrated Carbon Ecology & Economy (ICEE) model.
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simulation purposes at the regional, continental, and global

scales (Schimel et al., 1994; VEMAP, 1995; Schimel et al.,

1997). CENTURY has already been adapted for simulating

nitrogen and C dynamics in various ecosystems in the

Atlantic lowlands of Costa Rica, including primary forests,

secondary forests, pastures, and banana plantations (Liu

et al., 1999, 2000; Reiners et al., 2002).

Major inputs for the monthly-time-step version of

CENTURY include land-use and land-cover type, monthly

average maximum and minimum air temperature, monthly

precipitation, lignin content of the plant material, C:N plant

tissues, soil texture, initial soil C and N levels, atmospheric

N deposition, and management practices such as fertiliza-

tion. Many of these inputs come from field measurements;

others come from existing literature. Past land-use and land-

cover changes are interpolated, while future land-use

changes are predicted using the economic model of land

use described in Section 4. The major outputs of CENTURY

include net primary productivity, crop yields, C decompo-

sition, C exchange rates between ecosystems and the

atmosphere, and C stocks in vegetation and soils.

In order to scale up the plot-level CENTURY model over

large areas such as an entire country (even one the size of

Costa Rica), a General Ensemble biogeochemical Modeling

System (GEMS) GEMS was developed that incorporates

spatially and temporally explicit information into the

simulations (Liu et al., 2003). In GEMS, the CENTURY

model is encapsulated within a data assimilator, through

which input files are updated automatically using infor-

mation from GIS data sets as well as results of the economic

model of land use. This GEMS is currently being used to

quantify the spatial and temporal dimensions of C dynamics

within the coterminous Unites States. A modified prototype

was also used for the estimation of the total flux and spatial

pattern of nitrous oxide emissions from soils in the Atlantic

Zone of Costa Rica (Reiners et al., 2002).

A primary strength of GEMS lies in its ability to make

explicit use of the joint frequency distribution (JFD) over

space of the critical driving variables such as land cover,

soils and climate. Specifically, a fundamental construct of

the GEMS is that variances and covariances of given

variables in space, information which can be provided in a

JFD table, are necessarily incorporated in the simulation

process. This is crucial for simulations that aggregate up

from plot-level results, as it forces the model to be explicit

in beliefs about key distributions. It also permits explicit

uncertainty estimates for the results, via ensemble Monte

Carlo simulations.

The JFD table gives a discrete partitioning over the

relevant space (e.g. Costa Rica) of:

EðpÞ ¼
ð

E½pðXÞ�f ðXÞdX ð1Þ

where p is the process-based environmental model, X is a

vector of model variables, and f is the joint frequency

distribution of X. Generally, it is impossible to analytically

integrate Eq. (1) because the models are usually complex.

Therefore, using a GIS, the JFD table provides:

EðpÞ ¼
Xn

i¼1

E½pðXiÞ�FðXiÞ ð2Þ

where n is the number of strata or unique homogeneous

regions as defined by the GIS overlays of the major inputs,

and F is the frequency of cells or the total area of strata i as

defined by Xi:

Before GEMS is run, the underlying biogeochemical

model CENTURY should be calibrated and validated with

field data collected in each dominant life zone in Costa

Rica. Our previous modeling efforts using CENTURY

indicated the importance of the water cycle in the tropical

moist to wet forest life zones to nitrogen trace gas

emissions, which is tightly coupled with the C cycle (Liu

et al., 2000; Reiners et al., 2002). Few models, including

CENTURY, have been tested in all the dominant life zones

in Costa Rica. To calibrate and validate our ecological

model we use newly collected ecological field data that

quantify C and N stocks in soils and aboveground biomass

of ecosystems, with systematic sampling of the variation in

edaphic, climatic, and land use conditions. Model vali-

dation performed so far, using field measurements

collected from 13 sites from five dominant life zones

(i.e., tropical montane rain forest (TM-rf), tropical pre-

montane moist forest (TP-mf), tropical moist forest (T-mf),

tropical dry forest (T-df), and tropical wet forest (T-wf)),

indicates that simulated results of aboveground live

biomass, large woody debris, and fine litter agreed well

with field measurements; simulated net primary production

values agreed well with data reported from Clark et al.

(2001); and total amounts of soil organic carbon (SOC) in

the top 20-cm soil layer were well simulated in TM-rf and

TP-mf, significantly under-estimated in T-df ða ¼ 0:05Þ;

and significantly overestimated in T-mf and T-wf ða ¼

0:05Þ: The overestimation of SOC by the model in T-mf

and T-wf was consistent with our previous findings that the

default maximum decomposition rates for the slow and

passive SOC in CENTURY, originally parameterized for

the Great Plains, were too low for the tropical moist and

wet forests (Liu et al., 2000). A comprehensive assessment

of the performance of the CENTURY in Costa Rica has

been planned as we are collecting additional field data in

different life zones.

3.2. Economic modeling

Our theoretical modeling of land-use choices generates

testable hypotheses about causation, motivating the use of

data on real behavior across time and space in a revealed

preference approach to estimate coefficients representing

causal effects, not simply correlation or trends. Early

applications of this approach to analyze deforestation

include Stavins and Jaffe (1990), and it has been used to

S. Kerr et al. / Journal of Environmental Management 69 (2003) 25–3728



consider C sequestration in the United States (Stavins, 1999;

Plantinga et al., 1998). For tropical settings, applications

include Pfaff (1999) in Brazil, and our work in Costa Rica

(Kerr et al., 2002).

An alternative approach is to develop models that specify

human behavior (Richards et al., 1993). On a larger scale,

Sohngen et al. (1999) consider C sequestration in commer-

cial forestry using an optimization model of global timber

markets. While these models have value for understanding

the effects of economic forces, if used for prediction they are

forced to assume that people will behave in exactly the ways

they specify, i.e. optimise in a narrowly defined sense. This

is extremely problematic when we consider the complexity

of the situations and motives real people face. Thus, in

generating predictions we prefer to let the data on past

human behaviour speak for themselves. We use econometric

analysis of human responses to ecological and economic

conditions to generate the parameters of our predictive

simulation model.

The economics has two steps. First, we model the

behavior of individual land users, taking outside conditions

as given for a particular location and point in time. This is

the basis of the second component in our integrated model

(see Fig. 1). Second, we explicitly model the interactions

among these individuals. We empirically test spatial

assumptions about the effects of land use choices of

conditions on neighboring plots. Interactions among plots

create potentially persistent and non-linear compound

effects of shocks such as a new road. This is the basis of

the third component in our integrated model.

3.2.1. Individual land-use behavior

The land manager of each plot i faces a dynamic

optimization problem that we model with two stages. First,

the land manager decides what he would do with the land if

he cleared it at time t: He chooses a crop xt; out of a set of

crops X; to maximize the present discounted value of his

expected utility (U is a von-Neumann Morgenstern utility

function and r is the discount rate) from a combination of

short and long run agricultural returns from a range of

options. yt indicates the choice made. The returns and hence

choices vary across space and time because of physical and

economic factors including productivity, crop prices and

access to markets. The exogenous physical and economic

conditions on the site are summarized in zt and the land use

history is given by ðy0…yt21Þ: xps are optimal choices from

s ¼ t þ 1 onward given expected future conditions. Current

choices will depend on their effect on these future options.

Future options depend on previous choices of crop because

of degradation of soil or investments in clearing, irrigation

or permanent crops.

In the case of the individual decision, Zt will include not

only truly exogenous characteristics such as initial soil and

climate, that affect crop yields, and international crop prices,

but also features such as access costs that are exogenous

from the point of view of the land manager although they are

determined within the wider model. The land manager’s

discount rate reflects the value of capital and his access to

capital. It also reflects his uncertainty about the future. For

instance, if he perceives his tenure security to be low, he will

have a high discount rate and future options will be less

important. The land manager solves this problem at every

point in time.

Maxxt[XEUðxtlðy0…yt21Þ;ZtÞ

þ
ð1

s¼tþ1
EUðxps lðx0…xt…xs21Þ;ZtÞe

2rðsÞds
ð3Þ

Rit; or the change in utility from the optimal choice of crop

for plot i at time t; is defined as the return from the series of

optimal choices now and in the future. It is used as an input

to the second stage of the problem.

The first stage of the problem can be estimated using a

multinomial logit on crop choice data (McFadden, 1974).

This requires estimates of potential crop returns under a

range of conditions. We need to make explicit links between

ecological characteristics of the land and economic returns.

Our earlier analysis of Costa Rica (Kerr et al., 2002) has

found that even broad measures of biophysical conditions,

lifezone and soil characteristics, have significant explanatory

power with respect to land use choices. CENTURY can

predict biomass productivity for each plot at each point in

time. These predictions can be used to create models of crop

yield calibrated with economic data on actual yields. When

we combine these with crop prices and transport cost

measures, we obtain site-specific measures of economic

returns that affect land-use choices and hence future soil

quality. This creates a spatially-specific dynamic feedback

from land use to land degradation then back to land returns

and land use.

This estimation yields predicted probabilities of choices

among different crops on land that is cleared. The model is

not deterministic because of the many unobservable factors

that affect land manager decisions. Land managers facing

observationally similar conditions do not in reality all

choose the same crop. The estimated optimal return will be a

weighted average of estimated returns for different crops

based on the predicted probabilities that each is chosen. Our

current analysis (Kerr et al., 2002) models land use choices

by correlating actual land use with lifezones and assigning

probabilities to each major land use in each lifezone. The

predicted probabilities are combined with price and yield

estimates to create estimates of potential returns if any plot

of land were cleared at any time, Rit:

In the second stage, given Rit; the land manager selects T ;

the time when the land is cleared (reforestation is treated as

a new crop). Below, Sit is the potential return (or rent) to

forested uses of the land, while CT is the cost of clearing net

of timber value (including lost option value):

MaxT

ðT

0
EUiðSitÞe

2rtdt þ
ð1

T
EUiðRitÞe

2rtdt 2 CT e2rt ð4Þ
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Using the results from the first stage, for transitions data, the

second stage of the problem could be estimated using

methods developed primarily in labor economics (Lan-

caster, 1990) and the study of technology adoption (Saloner

and Shepard, 1995; Kerr and Newell, 2003) as well as in

medical research. Continuous conditional probabilities of

transition from forest to cleared land on small plots would

be estimated from observed discrete transitions and a range

of explanatory variables by maximum likelihood using

testable assumptions about the underlying population

distribution. Currently, Kerr et al. (2002) estimates this

model for Costa Rica using data that groups discrete

transitions at the plot level into fractions deforested in larger

polygons.

Current decisions by neighboring land managers are

likely to be correlated with the land manager’s decision

because of unobservable conditions such as tenure security

that persist across space. To both test and control for spatial

correlation in grouped data, Kerr et al. (2002) applies

standard spatial error corrections (Anselin, 1988). With

plot-level data we will initially use a method known as the

Gibbs Sampler, in a Bayesian approach (LeSage, 1999;

Pinkse, 1999).

The quality of fit achieved in this model can be assessed

by considering the R2 of the regression that underlies it and

by comparisons with out-of-sample data. We also explicitly

model the uncertainty in each coefficient and in projections

of independent variables to provide distributions of predic-

tions (see Kerr et al. (2003) for more detail).

3.2.2. Evolution of economic conditions and path-dependent

spatial development

The returns to forest and different crops and the costs of

clearing depend on a combination of exogenous and

endogenous forces. Exogenous factors such as national

population, international crop prices and global technology

change over time. Distances to key locations (ports or major

cities) do not change, although the cost and time involved in

reaching them will. For econometric modeling, the effects

of observable exogenous factors can be included directly.

Unobservable but time-varying exogenous factors can be

included through testable assumptions on the time depen-

dent error structure. For predictive modeling, these factors

are predicted outside the model and entered as scenario

assumptions.

In addition, however, when one land manager makes a

decision he alters the choices affecting all other land

managers; some changes in conditions are endogenous. At

this point the system becomes complex and the individual

decisions are interactive. In the same way that Krugman’s

work on economic geography (Krugman, 1991) suggests

that cities will form gradually and that there are multiple

equilibria because of path dependence, the pattern of

agricultural expansion also will be gradual and path

dependent. For example, clearing land may require creating

an access path. This improves access for other plots of land

nearby and increases the attractiveness of clearing them

also. More extensive development may lead to the creation

of a road. Increased economic activity in an area increases

input supply and output demand for local producers in that

area. Widespread production of a specific crop will lead to

the provision of services for that crop such as seeds, special

fertilizers and equipment, local knowledge networks and a

marketing network. As population reaches a critical mass,

banks will establish credit facilities. Helpful (if one-

dimensional) models of this sort appear in Fujita et al.

(1999).

The variable but unobservable state of local and national

infrastructure and institutions are particularly important in

developing countries where capital scarcity, poor access,

poor information, weak property rights and expanding

agricultural frontiers are standard features. The costs of

rapid development and factors such as restricted capital

access and poor institutions mean that an area cannot move

directly to develop all of the land that would be profitable in

equilibrium. As infrastructure and institutions develop,

returns will be higher. This could lead to more clearing as

well as allowing land use to reach equilibrium more quickly.

High levels of national development may ultimately lead to

government development of regulations regarding tenure,

forestry development and forest conservation. Increased

income, urbanization, education and visible loss of the

natural environment, combined with an increase in foreign

tourism, may change cultural norms toward conservation.

In the econometric work we can include observations of

endogenous conditions such as roads, credit availability, etc.

This is a useful approach for identifying historical causality,

but for predictive purposes would require direct prediction

of all endogenous factors including roads. For predictive

modeling, these path-dependent effects can be estimated by

including contemporaneous and lagged spatial terms in the

‘time of clearing’ model. Contemporaneous conditions in

neighboring areas reflect activity in past periods; this affects

the conditions the land manager faces. Variables represent-

ing conditions in neighboring areas, such as level of

clearing, road access, population density and crop choices,

can be generated using GIS techniques. Kerr et al. (2002)

find evidence suggesting that both local and national

endogenous development are important determinants of

land use decisions.

3.3. ICEE integration

The previous sections have described the construction of

the model components. Here we discuss how they are

combined into an integrated ecological and economic model

and used to create simulations for validation and policy

purposes. The model illustrated in Fig. 1 can be summarized

in two equations. The first equation predicts endogenous

ecological and economic conditions, vt: The process-based

model predicts ecological conditions based on exogenous

ecological conditions, such as climate, elevation, and soil

S. Kerr et al. / Journal of Environmental Management 69 (2003) 25–3730



type, and on the history of land use. Zt is a matrix of

observable exogenous characteristics of the plot and the

economy at time t: yit is the actual land use on plot i at t so

ðyi0;…yit21Þ is the land use history. The land uses on

neighboring plots, yjt21; summarize the endogenous devel-

opment of the economic conditions. The dynamic spatial

economic model predicts these endogenous economic

conditions as a function of individual plot-level decisions.

vit ¼ vitðyit; ðyi0;…; yit21Þ;Zt; yjtÞ ð5Þ

The second equation predicts these individual plot-level

decisions. gxst ;yt
ðiÞ is a transition probability from the current

land use, yit; to each of n potential land uses xs;tþ1; s ¼

1;…; n for plot i during time t: These transition probabilities

sum to 1. The economic model predicts the transition

probabilities by multiplying the probability of clearing by

the conditional probability of choosing each particular crop.

Although the model predicts that expectations of future

ecological and economic conditions affect current decisions,

we assume that these expectations are based on current

information and conditions and are hence captured

indirectly.

�git ¼

gx1tþ1;yt
ðiÞ

..

.

gxntþ1;yt
ðiÞ

0
BBBB@

1
CCCCA ¼ �gðZit;vit; yi0;…; yitÞ ð6Þ

The next period’s land use, yitþ1; is a discrete random draw

from the distribution of land uses with probabilities defined

by the vector �git: These two equations are simulated

simultaneously.

In order to realize the seamless integration, the output of

the economic model on each simulation unit (an adminis-

trative district or a land parcel) at each time step (i.e. each

year) can be injected into the ecological model; the output

from the ecological model at each time step can then be fed

back to the economic model. Time synchronization between

those models is very important in the integrated model. It

ensures that the feedbacks between ecosystems and

economic systems we see in the real world are appropriately

represented in the integrated model. Several techniques can

be used to realize the parallel simulation (Tanenbaum,

1987). The key outputs from the integrated model are land

use and C stocks (changes) on each plot in each year as well

as at the national level.

4. Data used in Costa Rican illustration

4.1. Ecological data

Systematic datasets that quantify C and N pools in

ecosystems of tropical countries are rare. For example,

numerous field studies have examined soil C and N

dynamics in Costa Rica (Ewel et al., 1981; Matson et al.,

1987; Marrs et al., 1988; Motavalli et al., 1994, 1995;

Reiners et al., 1994; Veldkamp, 1994; Fernandes and

Sanford, 1995). However, no studies have yet been

conducted to quantify C and N pools at the ecosystem

scale in a manner that explicitly quantifies soil and

aboveground pools along the range of climatic, edaphic,

and land use characteristics encountered in Costa Rica.

Without detailed, region-specific measures of aboveground

and soil C and N pools, regional estimates of the dynamics

of such pools will be superficial at best, and inaccurate and

misleading at worst, because the distribution of both C and

N pools among tropical forest ecosystems varies substan-

tially as a function of soil type, climate, and land use and

land cover conditions (Detwiler, 1986; Schlesinger, 1986;

Brown et al., 1993; Hughes et al., 1999, 2000). While the

numerous studies relevant to C and N dynamics conducted

to date in Costa Rica aid the construction of C and N

budgets in ecosystems across the nation, these studies are

not sufficient to accurately estimate regional C and N stocks

in vegetation and soils. The paucity of relevant data

regarding terrestrial C and N pools and dynamics poses a

challenge for accurate national-scale accounting of C

sequestration in Costa Rica. Further, this challenge must

be addressed by any other country facing the task of

determining C stocks within ecosystems that span eleva-

tional, latitudinal, and precipitation gradients. Indeed, this

challenge may be less daunting in Costa Rica than in other

countries because of the relatively small size of that nation

and the relatively large amount of ecological studies that

have been conducted there.

Our research team is currently conducting a field

research program designed to quantify, in an extensive

and intensive manner, aboveground biomass, C, and N pools

in forest and agriculture ecosystems across Costa Rica. The

objectives are to carry out systematic and comprehensive

field measurements of aboveground biomass and C at 120

study sites within Costa Rican forests ranging from tropical-

wet to tropical-dry Life Zones (6 different zones), and to

quantify C dynamics along land use gradients that exist

within of each of those life zones. Sites include mature

forest vegetation, the dominant forms of managed sites (e.g.

pastures, banana and coffee crops), and secondary forests of

various ages. Mature forest values will be used as the

hypothesized maxima for aboveground C sequestration.

Actively managed sites (e.g. pastures and croplands) will be

used as the hypothesized minima for sequestration, and

secondary forests will provide information regarding

potential rates of accumulation following abandonment. In

this way we will determine the influence of edaphic and

climatic variables on aboveground biomass and C dynamics

as well as the interplay between land use change and those

environmental variables.

If our modeling efforts are to be applied to other

countries, ecosystem classification components of GEMS

can be based on climate and topographic data of the given

country or separately derived. In the Costa Rican case, we
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use the World Life-Zone System of Ecological Classifi-

cation (Holdridge, 1967). Ground observations and climate

data have been combined to create a GIS map of the 12 Life

zones and 11 transition zones in Costa Rica. This map,

provided by the Tropical Science Center, is used as a layer

of spatial framework (together with GIS maps of soils and

climate) to generate a JFD table defining the heterogeneities

of ecosystems types and biophysical conditions in Costa

Rica. The life zone map also provides common spatial units

for field sampling design, biogeochemical and economic

modeling and analysis.

4.2. Land use and land-use history

National scale land use/land cover data for tropical

countries is primarily available from remote sensing. In

developed countries, census data provides relatively

accurate time series data. Developing country census

data collection is usually infrequent and also done for

relatively large political units. Satellite images are

available since the late 1970s. With careful analysis

these provide high quality data at a fine level of detail.

They can relatively easily distinguish forest and non-

forest, as well as land cover categories such as rocky

areas, lakes, and mangroves.

We also gain useful data from aerial photos taken during

several different periods. For the whole of Costa Rica, this

data is available back to 1963. For some key areas of the

country, data is available back to 1945. It can roughly

separate forest and non-forest. Together, these images

provide the dependent variable for the economic modeling

of land use and also the raw data on land use history for the

ecological modeling.

Identifying specific land uses, such as coffee relative to

sugar plantations is much more difficult but the technology

is improving rapidly even there. For example, in Costa Rica

some data differentiates pasture, and seasonal and perma-

nent crops. Although it is technically possible to discrimi-

nate land uses to a very fine level, current data derived from

remote sensing of Costa Rica does not do so. Census data

also provides some information, as does industry associ-

ation data on production. We combine these three sources to

get the best possible estimates for major crops.

4.3. Socioeconomic data

The first use of socioeconomic data is to combine it with

ecological data to estimate agricultural returns. We collect

export prices for key crops. In the Costa Rican case this is

sufficient as a measure of price because large amounts of

crops are exported to world markets where Costa Rica has

no influence. In larger countries, or where much of the

production is for domestic use, prices depend on the levels

of production; the demand for crops must be modeled

separately. We also use data on observed yields for key

crops. Later we will complement them with biomass

productivity estimates from CENTURY. We have found

limited data on production costs and costs of establishment

for new crops. For example some crops require irrigation

and permanent crops such as coffee involve considerable

initial investment.

Transport costs are the final data needed to estimate

returns. These are estimated directly (Roebeling, 1999) or as

a function of travel distances and speeds based on a GIS

road network. The latter allows transport costs to vary over

time as the network develops. The different types of data are

complementary.

If we had georeferenced land-price data, we could

estimate returns in an alternative way, using ecological

conditions and data on the returns to crops that can be grown

as characteristics in a hedonic regression. Land price is

usually collected by local or central governments, as the

basis of land or property taxes. It will tend to be biased

because people want to minimize their tax, but may show a

reasonably consistent pattern across space. These two

approaches are complementary in choosing the best

agricultural return estimates for the final model.

Finally, in order to control for the process of

development, which includes exogenous changes in

infrastructure, institutions and markets that raise the

general level of returns, we require data on characteristics

of the economy such as Gross Domestic Product per

capita as an estimate of the level of development, and

openness ((exports þ imports)/GDP) as an estimate of

landowners’ access to international markets. These types

of data are readily available from census data and the

World Tables published by the International Monetary

Fund.

5. Policy analysis and uncertainty

5.1. Model predictions

The first products from these integrated modeling efforts

are estimates of C baselines and accompanying uncertainty

bounds on those baselines. These can be used to create

baselines for CDM projects or as the basis for negotiation on

the part of new countries that want to enter the Kyoto

Protocol on a similar basis to Annex I countries. For

example, Fig. 2 shows a baseline estimate for Costa Rica

going forward from 2000 (from Pfaff (2002)). This was

generated from our preliminary integrated model.

The figure suggests that forest levels will continue to

fall slowly and at a decreasing rate. Second, we can

predict how much forest will be protected, and hence C

will continue to be stored, in response to any given

monetary reward for C sequestration. By varying the

reward we can develop a supply or, equivalently, cost

function for C sequestration (i.e. a relationship between

the C reward and the C sequestration supplied by land

users). Fig. 3 shows an example of a supply function
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Fig. 2. Predicted baseline C stock in mature forest in Costa Rica.

Fig. 3. The supply of additional carbon from avoided deforestation between 2000 and 2020 at different levels of annual payment per tones of C.
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produced from our preliminary model. It predicts that by

2020, if the annual payment for C storage from 2000

onward is $18.50 per tonne C then about 3.4 million

tonnes or 1% more carbon will be stored than in the

baseline.2 We use annual payments to reward ongoing

storage to avoid the problems associated with the

temporary nature of forests. If the annual payment exceeds

$50, almost no deforestation would occur. This allows us

to assess the value of incorporating C sequestration in the

climate-change mitigation effort.

The total cost of sequestering C is the integral under the

curve.3 The value of producing these credits is the difference

between the cost of producing them and their value to the

Annex I countries that will buy them. This is the area above

the curve up to the international carbon price (here

represented as an annual payment equivalent). The

international price reflects the marginal cost of reducing

net emissions in other ways or places.

Uncertainties in predictions of future scenarios arise from

several factors, including the predictions of exogenous

variables (e.g. population, economic growth, C reward),

historical input data, estimated model coefficients and

assumed parameters, as well as potential model misspeci-

fication. To model uncertainty, values for certain critical

variables including precipitation, temperature, soil texture,

and initial soil C content can be drawn from spatially-

explicit GIS databases according to the empirical distri-

butions as defined by the databases. Economic values such

as population, GNP, and international prices can be varied

across ranges based on long-term external forecasts.

Coefficients can be varied based on their estimated

variance-covariance matrix.

In addition, the economic model is inherently uncertain

because land-use choices contain a probabilistic element.

Each land-use choice has effects on future choices in the

neighborhood and possibly region. Depending on the

strengths of positive and negative feedbacks, these changes

could disappear so that land use in many simulations

converges to a common deterministic pattern, or could be

amplified in the surrounding area. Small difference in land

managers’ choices early in the land use path could lead to

significantly different paths of land use and C sequestration.

Successive predictive runs with identical inputs will lead to

different paths of development depending on the probabil-

istic path taken in each run. We provide confidence limits or

uncertainty bounds for the predicted baselines and C supply

functions based on Monte Carlo simulations. We test the

sensitivity of environmental and economic outcomes to

different policies and can thus contribute to more effective

design of the rules that allow C sequestration to replace

emissions reductions in developed countries.

5.2. Evaluation of alternative models—economic

and environmental costs

When used predictively, the model generates point

forecasts of land-use baselines and C stocks at each point

in time, on each plot, under different scenarios. These

could be used to define rules for rewarding C sequestra-

tion (i.e. baselines and C stock measurements). Rather

than measure C directly on each plot where C sequestra-

tion is being rewarded, a very costly process, the model

would allow C numbers to be based on the climatic and

ecological conditions on the plot and the land use history

known from GIS databases. When climatic and ecological

GIS databases are available, baseline forecasts and C

estimates could be made from anywhere in the world and

crosschecked by other analysts without the need to

actually visit the regions in question.

If C predictions from models such as ours are

compared to careful on-site measurements, we will

observe forecast/measurement errors. The land-use base-

line predictions also will be incorrect relative to true

counterfactuals, although those cannot be observed. By

definition we cannot observe what would have happened

without the reward if the land managers did in fact

receive the reward. Thus, when land managers are

rewarded for C sequestration, their rewards will be

incorrect by an unobservable amount. These errors in

baseline predictions and C measurement have real social

costs even when we cannot observe them.

When regulatory rewards are based on incorrect

measures and forecasts, there are three costs. First, the

inaccurate rewards will lead to aggregate environmental

outcomes that differ from those desired. Overstated

measurements of sequestration would lead to real

increases in global net emissions when the sequestration

credits are sold to a developed country and they use them

to increase their own net greenhouse gas emissions. What

matters here are errors in aggregate additional sequestra-

tion relative to baseline for the whole country (or the

globe). The cost will depend on how far, under the

inaccurate rewards, the aggregate actual additional

sequestration differs from the aggregate credits generated

for sale. The global cost of each excess credit could be

measured as marginal environmental damage minus

avoided marginal abatement cost. Producing too many

credits is likely to be perceived as a greater cost than

producing too few, although if global targets were chosen

efficiently both would be concerns.

Second, land managers would have faced inappropriate

and hence inefficient incentives to sequester C. The cost

of the sequestration that did in fact occur would be higher

than necessary. Some will sequester too much and others

too little. Our model can estimate these costs in dollar

terms. With accurate C rewards, the average cost per

tonne in the year 2020 of continuing to store 1% of

baseline carbon, given by the area under the solid curve in

2 This is the amount of carbon supply that would accumulate after 20

years of a $20 annual carbon rental-price.
3 This is the cost in 2020 of continuing to store that much carbon.
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Fig. 3, is $7.90.4 The marginal cost of additional carbon

storage over the period 2000 to 2020 is $18.50 per tonne

per year. The dotted line in Fig. 3 shows the cost curve

for sequestering when there is error in our carbon

measurements.5 Introducing variance in carbon measure-

ment increases the cost of storing this carbon by

approximately 3%.

Third, land managers who sequester equal amounts of C

will be rewarded differently, thereby creating equity

concerns. This could affect the acceptability of the system.

Unacceptability is immeasurable but the marginal costs will

increase with the size of errors, whether those errors are

positive or negative.

Both of these costs, efficiency and equity, depend on

errors in plot-level rewards. Efficiency costs simply depend

on errors relative to reality. Equity costs depend on how

forecasts vary across plots that are perceived to be identical.

Even if the forecasts provide the correct number of credits

for aggregate sequestration, inefficiency and inequity could

be problems.

We can evaluate predictions using assumptions about

each of these types of cost and a combination of costs. The

use of social costs to evaluate errors takes us beyond

standard validation approaches where errors vary only by

size, not by direction or relationship to other variables. Once

we have specified our cost function for errors, standard

validation approaches could be used to analyze the

distribution of the cost of errors rather than the distribution

of the errors themselves.

5.3. How much accuracy is sufficient?

Our general modeling approach allows us to produce

forecasts based on remotely sensed and exogenous data,

reducing the costs of creating baselines and measuring

C. Simplifying that model still further would save on the

need to collect so much data and/or the need for so much

modeling complexity. For most developing countries,

ecological data is not as readily available as in the Costa

Rican example. The more site-specific data a modeling

approach needs the more expensive it will be to calibrate

and validate, because the costs of collecting ecological field

data, new socio-economic data and land cover data is high.

Historical socio-economic data may not exist. Can we

generate simplified versions of the integrated model that

reach a reasonable degree of accuracy in prediction?

We can simulate a variety of models that are based

directly on our basic model but simplified in terms of both

data input and model complexity. We can then compare

their forecast errors to our full model. Simpler, partially

linearized versions of our models could be created using

statistical analysis such as step-wise regression analysis or

non-linear regression analysis (Johnson and Wichern,

1988). Meta-modeling techniques have been used to

evaluate the impact of agricultural policy on soil degra-

dation (Lakshminarayan et al., 1997). In the same way,

meta-models could be developed to define forecasting

models, with different degrees of complexity, based on the

simulated results of the integrated model.

After developing the simpler meta-models from a subset

of data, we can test their accuracy on the out-of-sample

locations and time periods against both the existing GIS

databases and simulated results based on the integrated

model. The importance of variables and the accuracy of

different models can be determined by considering the

economic implications of models using different levels of

complexity and variables and the errors they create, as

discussed above. Based on this analysis, we can pinpoint the

variables, types of locations and time periods where field

data and remote sensing data should be collected to estimate

baselines and C stocks most effectively. Preliminary

analysis of this type is reported in Kerr et al. (2003). The

results could facilitate more effective monitoring of C

sequestration projects; these sensitive variables and

locations should be monitored with highest priority (Post

et al., 2001).

Such comparisons also will suggest whether the

simplified meta-models maintain sufficient accuracy. Accu-

racy can be measured in terms of the estimated models’

abilities to ensure the sequestration outcomes envisioned

and their implications for economic efficiency and equity.

These gains can be contrasted with the qualitative value of

greater model simplicity. Simplicity translates to lower

costs of participation in trading and, potentially, lower

corruption through greater transparency and verifiability in

the application of crediting rules. If sufficient accuracy is

possible at reasonable cost, the sequestration outcomes

envisioned could be approximately achieved and reasonable

efficiency and equity would be attained. Greater simplicity

would stimulate further participation in climate-change

mitigation thereby lowering costs and raising the global

efficiency of implementation of the Kyoto emissions

limitations.

6. Conclusion

To predict the evolution of an ecosystem as accurately as

possible, the interactions between ecosystem dynamics and

human land-use need to be modeled. The methodology

developed in this paper involves a three-component

approach that models the development of the ecological

system, the human land-use system and the dynamic

interactions between the two. The ecological component

uses methods that combine ecological process-modeling

and GIS to scale plot-level results up to landscapes and

regions. This maintains the benefits of detailed process

modeling while allowing for heterogeneity in the landscape.

4 The modeling of the impacts of carbon errors into our simulations is

described in detail in Kerr et al. (2003).
5 Details of the derivation of this line are given in Kerr and Hendy (2003).
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The economic component advances empirical modeling of

land-use change in circumstances where markets and

institutions are in the process of rapid development so that

more standard models of equilibrium land use cannot be

applied readily. We are able to analyze the economic and

environmental costs of uncertainty.

When predicting baselines and C dynamics for quantify-

ing C rewards, the cost associated with collection of a

comprehensive dataset should be weighed against the

benefits gained from the high-quality data. Simpler models

with coarser datasets will result in less costly baseline and C

predictions. In this paper we have proposed assessing the

relative benefits of models with varying degrees of

complexity by comparing the environmental, economic

efficiency, and equity costs associated with errors in

baselines and C measures. The distributions of the costs of

the errors can be used to compare models.

These methods all will be applicable to future models of

coupled natural and human land-use systems. The primary

motivation for our research is to develop models and

generate insights that will allow researchers and policy

analysts to model land-use and C interactions in other

countries and regions. It is our ultimate goal to generalize

and apply the integrated modeling system to other regions,

including non-tropical regions. The selection of Costa Rica

to perform the model development was deliberate. Costa

Rica offers rich databases, and a range of economic

conditions and tropical life zones that cover most of the

economic and ecological conditions represented in Latin

America today. If models are to be widely used to

implement climate-change mitigation policies such as the

CDM, however, they need to be simpler, with reduced

input variables and less complex modeling structures.

Testing simplified versions of our model to find a simpler

model that maintains accuracy will help us to suggest a

modeling system or methodology that is more easily

applied to regions where data are not as rich as in Costa

Rica.
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